Обнаружение пиков для выращивания временных рядов с использованием Swift

3 wivku [2017-04-24 11:34:00]

У кого-нибудь есть хороший алгоритм для измерения пиков в растущих данных временных рядов с помощью Swift (v3)? Таким образом, обнаруживайте пики по мере поступления данных.

например. быстрая версия плавного z-волнового алгоритма. Этот алгоритм кажется подходящим.

Мне нужно было бы обнаружить пики, как показано ниже. Данные содержат положительные и отрицательные числа. Вывод должен быть счетчиком пиков и/или true/false для этого конкретного образца.

введите описание изображения здесь

Пример набора данных (сводка последних серий):

let samples = [0.01, -0.02, -0.02, 0.01, -0.01, -0.01, 0.00, 0.10, 0.31,
  -0.10, -0.73, -0.68, 0.21, 1.22, 0.67, -0.59, -1.04, 0.06, 0.42, 0.07, 
  0.03, -0.18, 0.11, -0.06, -0.02, 0.16, 0.21, 0.03, -0.68, -0.89, 0.18, 
  1.31, 0.66, 0.07, -1.62, -0.16, 0.67, 0.19, -0.42, 0.23, -0.05, -0.01,
  0.03, 0.06, 0.27, 0.15, -0.50, -1.18, 0.11, 1.30, 0.93, 0.16, -1.32, 
  -0.10, 0.55, 0.23, -0.03, -0.23, 0.16, -0.04, 0.01, 0.12, 0.35, -0.38,
  -1.11, 0.07, 1.46, 0.61, -0.68, -1.16, 0.29, 0.54, -0.05, 0.02, -0.01,
  0.12, 0.23, 0.29, -0.75, -0.95, 0.11, 1.51, 0.70, -0.30, -1.48, 0.13,
  0.50, 0.18, -0.06, -0.01, -0.02, 0.03, -0.02, 0.06, 0.03, 0.03, 0.02,
  -0.01, 0.01, 0.02, 0.01]

Обновление: благодаря Jean-Paul для начального порта Swift. Но не уверен, что z-wave algo является правильным для этого набора данных. lag=10,threshold=3,influence=0.2 отлично работает для последней серии наборов данных, но мне не удалось найти комбинацию, которая подходит для полного набора данных.

Проблемы: при большой задержке первые образцы данных не включаются, мне нужен один сигнал на пик, и алгоритм нуждается в дальнейшей работе, чтобы сделать ее более эффективной.

например. результат для полного набора данных, используя код Python и (например) lag=5,threshold=2.5,influence=0.7 отсутствуют пики для рядов 1 и 2 и показаны слишком много ложных срабатываний в тихие периоды

введите описание изображения здесь

Полный набор данных (должен содержать 25 пиков):

let samples = [-1.38, -0.97, -1.20, -2.06, -2.26, -0.99, 0.11, -0.47, -0.95, -2.61, -0.88, -0.74, -1.12, -1.19, -1.12, -1.04, -0.72, -1.21, -2.61, -1.41, -0.23, -0.27, -0.43, -1.77, -2.75, -0.61, -0.73, -1.53, -1.02, -1.14, -1.12, -1.06, -0.78, -0.72, -2.41, -1.55, -0.01, -0.44, -0.47, -2.02, -1.66, -0.43, -0.93, -1.51, -0.86, -1.06, -1.10, -0.88, -0.84, -1.26, -2.59, -0.92, 0.29, -0.50, -1.31, -2.40, -0.88, -0.56, -1.09, -1.14, -1.09, -0.90, -0.99, -0.84, -0.75, -2.59, -1.34, -0.08, -0.36, -0.50, -1.89, -1.60, -0.55, -0.78, -1.46, -0.96, -0.97, -1.18, -0.98, -1.10, -1.07, -1.06, -1.79, -1.78, -1.54, -1.25, -1.00, -0.46, -0.27, -0.20, -0.15, -0.13, -0.11, -0.13, -0.09, -0.09, -0.05, 0.02, 0.20, -0.31, -1.35, -0.03, 1.34, 0.52, 0.80, -0.91, -1.26, -0.10, -0.10, 0.53, 0.93, 0.60, -0.83, -1.87, -0.21, 1.26, 0.44, 0.86, 0.73, -2.05, -1.66, 0.31, 1.04, 0.72, 0.63, -0.01, -2.14, -0.48, 0.77, 0.63, 0.58, 0.66, -1.01, -1.28, 0.18, 0.44, 0.09, -0.27, -0.06, 0.06, -0.18, -0.01, -0.08, -0.07, -0.06, -0.06, -0.07, -0.07, -0.06, -0.05, -0.04, -0.03, -0.02, -0.02, -0.03, -0.03, -0.01, 0.01, 0.00, 0.01, 0.05, 0.12, 0.16, 0.25, 0.29, -0.16, -0.69, -1.05, -0.84, -0.54, -0.07, 0.46, 1.12, 1.05, 0.77, 0.68, 0.63, 0.39, -0.96, -1.61, -0.68, -0.14, -0.03, 0.22, 0.31, 0.15, -0.02, 0.11, 0.14, 0.00, 0.04, 0.18, 0.27, 0.14, -0.05, -0.03, -0.08, -0.41, -0.94, -1.03, -0.50, 0.02, 0.52, 1.10, 1.03, 0.79, 0.69, 0.55, -0.34, -1.17, -0.89, -0.54, -0.22, 0.37, 0.47, 0.39, 0.23, 0.00, -0.02, 0.05, 0.10, 0.12, 0.09, 0.05, -0.12, -0.50, -0.89, -0.89, -0.48, 0.00, 0.43, 1.03, 0.95, 0.67, 0.64, 0.47, -0.07, -0.85, -1.02, -0.73, -0.08, 0.38, 0.46, 0.32, 0.15, 0.01, -0.01, 0.09, 0.20, 0.23, 0.19, 0.12, -0.50, -1.17, -0.97, -0.12, 0.15, 0.70, 1.31, 0.97, 0.45, 0.27, -0.73, -1.00, -0.52, -0.27, 0.10, 0.33, 0.34, 0.23, 0.07, -0.04, -0.27, -0.24, 0.10, 0.21, 0.05, -0.07, 0.04, 0.21, 0.29, 0.16, -0.45, -1.13, -0.93, -0.28, 0.04, 0.72, 1.35, 1.05, 0.56, 0.43, 0.17, -0.59, -1.38, -0.76, 0.10, 0.44, 0.46, 0.35, 0.12, -0.07, -0.05, -0.01, -0.07, -0.04, 0.01, 0.01, 0.06, 0.02, -0.03, -0.05, 0.00, 0.01, -0.02, -0.03, -0.02, -0.01, 0.00, -0.01, 0.00, -0.01, 0.00, -0.01, -0.01, 0.00, 0.01, -0.01, -0.01, 0.00, 0.00, 0.01, 0.01, 0.01, 0.04, 0.06, 0.05, 0.05, 0.04, 0.03, 0.00, -0.12, -0.16, -0.09, -0.01, 0.14, 0.07, 0.06, 0.00, -0.03, 0.00, 0.06, 0.06, -0.04, -0.11, -0.02, 0.13, 0.18, 0.21, 0.01, -0.31, -0.92, -1.35, -0.62, 0.03, 0.78, 1.36, 1.07, 0.59, 0.75, 0.42, -1.65, -3.16, -0.97, 0.24, 1.44, 1.50, 0.84, 0.47, 0.56, 0.40, -1.50, -2.71, -1.22, 0.01, 1.20, 1.55, 0.92, 0.44, 0.66, 0.73, -0.43, -2.34, -2.28, -0.72, 0.36, 1.41, 1.56, 0.89, 0.54, 0.67, 0.39, -1.78, -2.75, -1.07, -0.07, 1.16, 1.65, 0.80, 0.47, 0.73, 0.86, -0.24, -1.52, -1.68, -0.39, 0.02, 0.38, 0.60, 0.49, 0.02, -0.42, -0.31, -0.01, 0.08, 0.00, -0.07, -0.05, -0.01, -0.02, -0.04, -0.05, -0.02, -0.01, -0.02, -0.02, -0.03, -0.05, -0.04, -0.03, -0.01, -0.01, 0.00, -0.01, 0.00, 0.01, 0.00, 0.00, 0.00, 0.01, 0.01, -0.01, -0.03, -0.02, -0.01, 0.00, 0.00, 0.00, -0.01, 0.01, 0.00, -0.01, 0.02, 0.07, 0.15, 0.28, 0.31, 0.08, -0.26, -0.54, -0.96, -1.08, -0.27, 0.01, 0.45, 1.18, 1.07, 0.71, 0.65, 0.20, -0.80, -1.30, -0.74, -0.24, 0.29, 0.47, 0.34, 0.15, 0.02, 0.03, -0.02, -0.16, -0.13, 0.05, 0.09, -0.01, -0.08, -0.06, 0.03, 0.13, 0.19, 0.23, 0.18, 0.10, -0.07, -0.44, -0.91, -1.05, -0.64, -0.08, 0.50, 1.12, 1.35, 0.89, 0.58, 0.54, -0.58, -1.27, -1.20, -0.48, 0.19, 0.62, 0.62, 0.37, -0.01, -0.35, -0.33, 0.07, 0.29, 0.10, -0.14, -0.10, 0.07, 0.07, 0.01, 0.03, 0.09, 0.20, 0.32, 0.26, -0.02, -0.32, -0.78, -1.25, -0.93, -0.16, 0.30, 0.88, 1.40, 1.14, 0.72, 0.48, -0.54, -1.21, -1.13, -0.41, 0.18, 0.51, 0.53, 0.36, 0.11, -0.03, -0.09, -0.28, -0.11, 0.11, 0.15, 0.04, -0.08, -0.04, 0.04, 0.09, 0.16, 0.26, 0.43, 0.09, -0.88, -1.46, -0.64, -0.16, 0.43, 1.37, 1.34, 0.84, 0.52, -0.17, -0.87, -1.22, -0.76, 0.03, 0.47, 0.60, 0.36, 0.04, -0.09, -0.03, 0.02, -0.04, 0.04, 0.12, 0.13, 0.19, 0.27, 0.31, 0.18, -0.42, -0.99, -1.13, -0.75, -0.22, 0.50, 1.42, 1.41, 0.98, 0.51, 0.29, -0.69, -1.59, -0.88, -0.13, 0.31, 0.49, 0.46, 0.30, 0.05, -0.08, -0.03, 0.01, -0.04, -0.06, 0.02, 0.03, 0.01, -0.02, 0.01, 0.04, 0.06, 0.04, 0.03, 0.02, 0.03, 0.03, 0.01, -0.01, 0.00, 0.02, 0.00, 0.02, 0.02, 0.02, -0.02, -0.01, 0.02, 0.02, 0.01, 0.02, 0.02, 0.02, 0.02, 0.04, 0.03, 0.01, 0.01, 0.02, 0.01, 0.01, 0.01, 0.02, 0.01, 0.00, 0.01, 0.01, 0.00, 0.00, 0.01, 0.00, 0.00, 0.01, 0.00, 0.02, 0.00, 0.00, 0.01, 0.01, 0.00, 0.00, 0.01, 0.01, 0.00, 0.00, 0.00, 0.01, 0.01, 0.00, 0.01, 0.00, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]

Поэтому я не уверен, что z-волновой алгоритм является правильным подходом для такого набора данных.

algorithm swift time-series signal-processing


1 ответ


9 Jean-Paul [2017-04-25 12:48:00]

Перевод гладкого z-score algo в Swift

Хорошо, чтобы быстро помочь вам: вот перевод алгона в Swift: Демо в Swift Sandbox

Предупреждение: я отнюдь не быстрый программист, поэтому там могут быть ошибки!

Также обратите внимание, что я отключил отрицательные сигналы, так как для целей OP мы хотим только положительные сигналы.

Быстрый код:

import Glibc // or Darwin/ Foundation/ Cocoa/ UIKit (depending on OS)

// Function to calculate the arithmetic mean
func arithmeticMean(array: [Double]) -> Double {
    var total: Double = 0
    for number in array {
        total += number
    }
    return total / Double(array.count)
}

// Function to calculate the standard deviation
func standardDeviation(array: [Double]) -> Double
{
    let length = Double(array.count)
    let avg = array.reduce(0, {$0 + $1}) / length
    let sumOfSquaredAvgDiff = array.map { pow($0 - avg, 2.0)}.reduce(0, {$0 + $1})
    return sqrt(sumOfSquaredAvgDiff / length)
}

// Function to extract some range from an array
func subArray<T>(array: [T], s: Int, e: Int) -> [T] {
    if e > array.count {
        return []
    }
    return Array(array[s..<min(e, array.count)])
}

// Smooth z-score thresholding filter
func ThresholdingAlgo(y: [Double],lag: Int,threshold: Double,influence: Double) -> ([Int],[Double],[Double]) {

    // Create arrays
    var signals   = Array(repeating: 0, count: y.count)
    var filteredY = Array(repeating: 0.0, count: y.count)
    var avgFilter = Array(repeating: 0.0, count: y.count)
    var stdFilter = Array(repeating: 0.0, count: y.count)

    // Initialise variables
    for i in 0...lag-1 {
        signals[i] = 0
        filteredY[i] = y[i]
    }

    // Start filter
    avgFilter[lag-1] = arithmeticMean(array: subArray(array: y, s: 0, e: lag-1))
    stdFilter[lag-1] = standardDeviation(array: subArray(array: y, s: 0, e: lag-1))

    for i in lag...y.count-1 {
        if abs(y[i] - avgFilter[i-1]) > threshold*stdFilter[i-1] {
            if y[i] > avgFilter[i-1] {
                signals[i] = 1      // Positive signal
            } else {
                // Negative signals are turned off for this application
                //signals[i] = -1       // Negative signal
            }
            filteredY[i] = influence*y[i] + (1-influence)*filteredY[i-1]
        } else {
            signals[i] = 0          // No signal
            filteredY[i] = y[i]
        }
        // Adjust the filters
        avgFilter[i] = arithmeticMean(array: subArray(array: filteredY, s: i-lag, e: i))
        stdFilter[i] = standardDeviation(array: subArray(array: filteredY, s: i-lag, e: i))
    }

    return (signals,avgFilter,stdFilter)
}

// Demo
let samples = [0.01, -0.02, -0.02, 0.01, -0.01, -0.01, 0.00, 0.10, 0.31,
  -0.10, -0.73, -0.68, 0.21, 1.22, 0.67, -0.59, -1.04, 0.06, 0.42, 0.07, 
  0.03, -0.18, 0.11, -0.06, -0.02, 0.16, 0.21, 0.03, -0.68, -0.89, 0.18, 
  1.31, 0.66, 0.07, -1.62, -0.16, 0.67, 0.19, -0.42, 0.23, -0.05, -0.01,
  0.03, 0.06, 0.27, 0.15, -0.50, -1.18, 0.11, 1.30, 0.93, 0.16, -1.32, 
  -0.10, 0.55, 0.23, -0.03, -0.23, 0.16, -0.04, 0.01, 0.12, 0.35, -0.38,
  -1.11, 0.07, 1.46, 0.61, -0.68, -1.16, 0.29, 0.54, -0.05, 0.02, -0.01,
  0.12, 0.23, 0.29, -0.75, -0.95, 0.11, 1.51, 0.70, -0.30, -1.48, 0.13,
  0.50, 0.18, -0.06, -0.01, -0.02, 0.03, -0.02, 0.06, 0.03, 0.03, 0.02,
  -0.01, 0.01, 0.02, 0.01]

// Run filter
let (signals,avgFilter,stdFilter) = ThresholdingAlgo(y: samples, lag: 10, threshold: 3, influence: 0.2)
// Print output to console
print("\nOutput: \n ")
for i in 0...signals.count - 1 {
    print("Data point \(i)\t\t sample: \(samples[i]) \t signal: \(signals[i])\n")
}

// Raw data for creating a plot in Excel
print("\n \n Raw data for creating a plot in Excel: \n ")
for i in 0...signals.count - 1 {
    print("\(i+1)\t\(samples[i])\t\(signals[i])\t\(avgFilter[i])\t\(stdFilter[i])\n")
}

С результатами для данных образца (для lag = 10, threshold = 3, influence = 0.2):

Smooth z-score thresholding algorithm

Update

Вы можете улучшить производительность алгоритма, используя разные значения для lag среднего и стандартного отклонения. Например:.

// Smooth z-score thresholding filter
func ThresholdingAlgo(y: [Double], lagMean: Int, lagStd: Int, threshold: Double, influenceMean: Double, influenceStd: Double) -> ([Int],[Double],[Double]) {

    // Create arrays
    var signals   = Array(repeating: 0, count: y.count)
    var filteredYmean = Array(repeating: 0.0, count: y.count)
    var filteredYstd = Array(repeating: 0.0, count: y.count)
    var avgFilter = Array(repeating: 0.0, count: y.count)
    var stdFilter = Array(repeating: 0.0, count: y.count)

    // Initialise variables
    for i in 0...lagMean-1 {
        signals[i] = 0
        filteredYmean[i] = y[i]
        filteredYstd[i] = y[i]
    }

    // Start filter
    avgFilter[lagMean-1] = arithmeticMean(array: subArray(array: y, s: 0, e: lagMean-1))
    stdFilter[lagStd-1] = standardDeviation(array: subArray(array: y, s: 0, e: lagStd-1))

    for i in max(lagMean,lagStd)...y.count-1 {
        if abs(y[i] - avgFilter[i-1]) > threshold*stdFilter[i-1] {
            if y[i] > avgFilter[i-1] {
                signals[i] = 1      // Positive signal
            } else {
                signals[i] = -1       // Negative signal
            }
            filteredYmean[i] = influenceMean*y[i] + (1-influenceMean)*filteredYmean[i-1]
            filteredYstd[i] = influenceStd*y[i] + (1-influenceStd)*filteredYstd[i-1]
        } else {
            signals[i] = 0          // No signal
            filteredYmean[i] = y[i]
            filteredYstd[i] = y[i]
        }
        // Adjust the filters
        avgFilter[i] = arithmeticMean(array: subArray(array: filteredYmean, s: i-lagMean, e: i))
        stdFilter[i] = standardDeviation(array: subArray(array: filteredYstd, s: i-lagStd, e: i))
    }

    return (signals,avgFilter,stdFilter)
}

Тогда использование, например, let (signals,avgFilter,stdFilter) = ThresholdingAlgo(y: samples, lagMean: 10, lagStd: 100, threshold: 2, influenceMean: 0.5, influenceStd: 0.1) может дать намного лучшие результаты:

DEMO

Улучшен плавный алгоритм z-score